XⅢ.画像工学

XⅢ.画像工学

入出力特性(コントラスト)

入出力特性(コントラスト) ・コントラスト  コントラスト=フィルムコントラスト×被写体コントラスト ・フィルムコントラスト :ガンマであり、特性曲線に依存する ・被写体コントラスト :logE1-logE2  「管電圧」「被写体厚」「減弱係数」「照射野」に左右される ・コントラスト分解能 :デジタル系>増感紙フィルム系 特性曲線 (63.88) ・ディスプレイの特性曲線  縦軸:輝度 (単位:Cd/mm2)  横軸:画素値 ・オーバーオール特性曲線    縦軸:最終出力値(ディスプレイでは輝度)   横軸:相対X線強度の常用対数 ・検出器自体の特性曲線  縦軸:X線量    横軸:発光量または電圧など 得られる情報  (69am47、64.92、63.95、60.93) 1、最低濃度(Dmin:かぶり濃度+ベース濃度) 2、フィルムコントラスト(ガンマ)    3、寛容度(ラチチュード)  ≒ ダイナミックレンジ 4、最高濃度(Dmax)平均        5、階調度(グラディエントG) 6、相対感度   ...
XⅢ.画像工学

解像特性(鮮鋭度)

解像特性(鮮鋭度) 影響因子 「焦点サイズ」:小さいほうが良い         「被写体フィルム距離」:短いほうが良い 「X線入射角度」:小さいほうが良い        「焦点フィルム距離」:長いほうが良い 「感度」:高感度増感紙では悪い 「被写体コントラスト」:高いほうが良い *空間分解能 増感紙フィルム系>デジタル系 MTFによる評価  MTF(Moudulation Transfer function)とは点または線像強度分布をフーリエ変換の関係を用いて空間周波数領域に変換した関数で、ボケの度合いを表すことが出来る  「線形性」と「位置不変性」を満たしていることが条件となる  デジタル系では「位置不変性」が成り立たない  鮮鋭度の評価には2cycle/mmを良く用いる ・MTFへの影響因子  「散乱X線」  「サンプリング間隔 → エリアシング」 ・エリアシングの影響を含まないMTF 「プリサンプリングMTF」 「アパーチャMTF」 「X線検出器のMTF」 「ディスプレイMTF」 「画像処理フィルタのMTF」 構成要素とそれぞれの...
XⅢ.画像工学

ノイズ特性(粒状性)

ノイズ特性(粒状性) 粒状性 (65.89、60.89)  低コントラスト分解能(低周波領域)に影響を及ぼす  粒状性悪:低コントラスト分解能悪 ・DR系のノイズ (61.89) 「X線量子モトル(量子ノイズ)」:最も大きな影響で入射X線量に依存する 「光量子ノイズ(CR)」:入射X線量に依存する 「システムノイズ」:構造モトルや電気系ノイズ            → 固定ノイズ 「量子化ノイズ」 ・DR系のノイズへの影響因子 「サンプリングアパーチャのMTF」 「サンプリング間隔」 「画像処理のMTF」 「画像表示のMTF」 ウィナースペクトル(WS):NPS(Normalized NPS) (71am95、64.91、63.90、62.89、61.91)  面積の次元を持ち、ノイズ量を空間周波数ごとに示す  自己相関関数(濃度変動)をフーリエ変換する方法と、波形を直接フーリエ変換する方法がある  $$ウィナースペクトルWS(u,v)=\frac { ⊿x×⊿y }{ N×M } ×{ |F(u,v)| }^{ 2 }$$  F(u,...
XⅢ.画像工学

総合画像評価

総合画像評価 ROC曲線解析  (68am95、67pm96、65.90、63.91.92、60.92)  主観的な総合画像評価法  ・ROC曲線を求める方法 (1)評定手続き ・評定確信度法 :5段階のカテゴリーは良く用いられる ・連続確信度法 :カテゴリーを設けず、連続スケールで評価する (2)二段階評価手続き  Yes or Noの二通りの評価を行う ・読影者間の能力差を評価できる      ・異なるモダリティ間の解析にも使用可能 ・評定の難易度に影響される ROC曲線  (70am65) ・縦軸:真陽性率(的中確率)  ・横軸:偽陽性率(誤報確率) ・ROC曲線下面積Az  Az:0.5≦Az≦1.0     Azは大きいほど評価が良い  2択法では正答率と同等になる ・刺激-反応行列    反応あり 反応なし 刺激あり TPF FNF 刺激なし FPF TNF ・評価の要素  (71pm46.94、69pm95、68pm95、65.91、64.92、63...
スポンサーリンク
error: Content is protected !!